Physical Models of Human Motion for Estimation and Scene Analysis
نویسنده
چکیده
Physical Models of Human Motion for Estimation and Scene Analysis Marcus A Brubaker Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2011 This thesis explores the use of physics based human motion models in the context of videobased human motion estimation and scene analysis. Two abstract models of human locomotion are described and used as the basis for video-based estimation. These models demonstrate the power of physics based models to provide meaningful cues for estimation without the use of motion capture data. However promising, the abstract nature of these models limit the range of motion they can faithfully capture. A more detailed model of human motion and ground interaction is also described. This model is used to estimate the ground surface which a subject interacts with, the forces driving the motion and, finally, to smooth corrupted motions from existing trackers in a physically realistic fashion. This thesis suggests that one of the key difficulties in using physical models is the discontinuous nature of contact and collisions. Two different approaches to handling ground contacts are demonstrated, one using explicit detection and collision resolution and the other using a continuous approximation. This difficulty also distinguishes the models used here from others used in other areas which often sidestep the issue of collisions.
منابع مشابه
An Improved Motion Vector Estimation Approach for Video Error Concealment Based on the Video Scene Analysis
In order to enhance the accuracy of the motion vector (MV) estimation and also reduce the error propagation issue during the estimation, in this paper, a new adaptive error concealment (EC) approach is proposed based on the information extracted from the video scene. In this regard, the motion information of the video scene around the degraded MB is first analyzed to estimate the motion type of...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملJust Noticeable Difference Estimation Using Visual Saliency in Images
Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملSegmentation-based Motion Estimation for Second Generation Video Coding Techniques
This chapter addresses the development of a new approach to motion estimation which rely on a semantic representation of the scene in terms of objects. More speciically, motion models, segmentation-based motion estimation, spatio-temporal segmentation and tracking are more thoroughly discussed. Simulation results are presented to show the eeciency of the new approach.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011